Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin.
نویسندگان
چکیده
Plant invasion by pathogenic fungi involves regulated growth and highly organized fungal morphological changes. For instance, when the smut fungus Ustilago maydis infects maize (Zea mays), its dikaryotic infective filament is cell cycle arrested, and appressoria are differentiated prior to plant penetration. Once the filament enters the plant, the cell cycle block is released and fungal cells begin proliferation, suggesting a tight interaction between plant invasion and the cell cycle and morphogenesis control systems. We describe a novel factor, Biz1 (b-dependent zinc finger protein), which has two Cys(2)His(2) zinc finger domains and nuclear localization, suggesting a transcriptional regulatory function. The deletion of biz1 shows no detectable phenotypic alterations during axenic growth. However, mutant cells show a severe reduction in appressoria formation and plant penetration, and those hyphae that invade the plant arrest their pathogenic development directly after plant penetration. biz1 is induced via the b-mating-type locus, the key control instance for pathogenic development. The gene is expressed at high levels throughout pathogenic development, which induces a G2 cell cycle arrest that is a direct consequence of the downregulation of the mitotic cyclin Clb1. Our data support a model in which Biz1 is involved in cell cycle arrest preceding plant penetration as well as in the induction of appressoria.
منابع مشابه
Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
The regulation of cyclin-dependent kinase (CDK) activity through inhibitory phosphorylation seems to play an important role in the eukaryotic cell cycle. We have investigated the influence that inhibitory phosphorylation of the catalytic subunit of mitotic CDK has on cell growth and pathogenicity of the corn smut fungus Ustilago maydis. This model pathogen is worthy of attention since it is wel...
متن کاملA member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis.
Here, we identified a new member of the Fizzy-related family of APC activators, Cru1, which is required for virulence in the corn smut fungus Ustilago maydis. We show that Cru1 promotes the degradation of B-type cyclins in U. maydis. Cells deficient in the Cru1 protein show defects in cell size, adaptation to nutritional conditions and cell separation. We propose that the phenotypes observed ar...
متن کاملThe Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development.
Regulation of the cell cycle and morphogenetic switching during pathogenic and sexual development in Ustilago maydis is orchestrated by a concerted action of the a and b mating-type loci. Activation of either mating-type locus triggers the G2 cell cycle arrest that is a prerequisite for the formation of the infectious dikaryon; this cell cycle arrest is released only after penetration of the ho...
متن کاملCharacterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity.
Pathogenesis, morphogenesis and cell cycle are connected in the fungal pathogen Ustilago maydis. Here we report the characterization of the catalytic subunit of the cyclin-dependent kinase, encoded by the gene cdk1, and the two B-type cyclins present in this organism, encoded by the genes clb1 and clb2. These cyclins are not redundant and appears to be essential for cell cycle. The analysis of ...
متن کاملThe Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis.
In the phytopathogenic fungus Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bE and bW, encoded by the b-mating-type locus. We have identified a b-dependently induced gene, clampless1 (clp1), that is required for the proliferation of dikaryotic filaments in planta. We show that U. maydis hyphae develop structures functionally equivalent to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 18 9 شماره
صفحات -
تاریخ انتشار 2006